Skip to main content
x

Clustering Powers of Sparse Graphs

Authors Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Xuding Zhu
Publication date 2020-10-30

We prove that if \(G\) is a sparse graph — it belongs to a fixed class of bounded expansion \(C\) — and \(d ∈ N\) is fixed, then the \(d\)th power of \(G\) can be partitioned into cliques so that contracting each of these clique to a single vertex again yields a sparse graph. This result has several graph-theoretic and algorithmic consequences for powers of sparse graphs, including bounds on their subchromatic number and efficient approximation algorithms for the chromatic number and the clique number.

Authors
Jaroslav Nešetřil (Institute for Theoretical Computer Science Charles University Prague, Czech Republic)
Patrice Ossona de Mendez (Centre d'Analyse et de Mathématiques Sociales (UMR 8557) and CNRS Paris, France)
Michał Pilipczuk (Institute of Informatics University of Warsaw Warsaw, Poland)
Xuding Zhu (Department of Mathematics Zhejiang Normal University Jinhua, China)